Product Description

Coupling

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.

OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Explaining Torque Density in Relation to Servo Couplings

Torque density is a critical concept in servo couplings that relates to the amount of torque a coupling can transmit relative to its size and weight. It is a measure of the coupling’s ability to handle high torque loads efficiently while maintaining a compact and lightweight design. Torque density plays a crucial role in motion control applications where space and weight are significant considerations.

A servo coupling with high torque density can transmit substantial torque without adding excessive bulk or weight to the system. This is especially important in applications where minimizing inertia and maximizing responsiveness are essential for precise motion control. By having a high torque density, the servo coupling can handle high torque requirements while contributing to the overall dynamic performance of the system.

Various factors contribute to the torque density of a servo coupling:

  • Material Selection: The choice of materials impacts the coupling’s strength and stiffness. High-strength materials with low weight, such as high-grade aluminum alloys or lightweight composites, can significantly improve torque density.
  • Design: The design of the coupling, including the shape and thickness of the flexible elements, affects its torque transmission capability. Optimizing the design for torque transmission efficiency can enhance torque density.
  • Flexibility: The coupling’s flexibility allows it to accommodate misalignments and reduce stress concentrations, contributing to its ability to handle high torque loads effectively.
  • Performance Ratings: Manufacturers often provide torque ratings for their servo couplings. These ratings indicate the maximum torque the coupling can transmit, helping users assess the coupling’s torque density in relation to its size and weight.

Choosing a servo coupling with high torque density is advantageous as it allows for compact and lightweight designs, reduces inertia, and improves the overall performance and responsiveness of the motion control system. It also helps prevent over-sizing the coupling, leading to cost savings and space optimization in the application.

clamp coupling

Maintenance Practices to Prolong the Life of Servo Couplings

Regular maintenance is essential to ensure the longevity and optimal performance of servo couplings. Here are some maintenance practices that should be followed:

  • Visual Inspection: Perform periodic visual inspections of the servo coupling to check for signs of wear, damage, or misalignment. Look for cracks, corrosion, or any other abnormalities that may affect the coupling’s performance.
  • Lubrication: If the servo coupling requires lubrication, follow the manufacturer’s recommendations for the appropriate lubricant type and interval. Proper lubrication helps reduce friction, wear, and heat generation, extending the coupling’s lifespan.
  • Torque Checks: Periodically check the torque of the coupling fasteners to ensure they are properly tightened. Loose fasteners can lead to misalignment and premature wear.
  • Alignment Verification: Verify the alignment of the servo coupling and correct any misalignments. Proper alignment ensures efficient power transmission and reduces unnecessary stress on the components.
  • Environmental Protection: Protect the servo coupling from environmental factors that can cause damage, such as dust, moisture, and chemicals. Consider using protective covers or seals if the application requires it.
  • Load Analysis: Regularly analyze the loads on the servo coupling to ensure it is operating within its rated capacity. Avoid subjecting the coupling to excessive loads that could lead to premature failure.
  • Operating Conditions: Monitor and maintain the operating conditions within the recommended parameters. High temperatures, excessive vibrations, or rapid temperature changes can adversely affect the coupling’s performance.
  • Replacement Schedule: Establish a replacement schedule based on the manufacturer’s recommendations and the servo coupling’s expected service life. Replace the coupling when it reaches the end of its useful life to prevent unexpected failures.
  • Proper Handling: Ensure proper handling during installation, maintenance, and removal. Avoid applying excessive force or shock that could damage the coupling.
  • Training: Provide training to maintenance personnel on the proper procedures for handling and maintaining the servo couplings. Properly trained staff can identify potential issues and take appropriate actions to prevent damage.

By adhering to these maintenance practices, servo couplings can operate at their best, providing reliable and efficient motion control while extending their service life.

clamp coupling

Advantages of Using Zero-Backlash Servo Couplings in Precision Systems

Zero-backlash servo couplings offer significant benefits in precision motion control systems where accuracy, repeatability, and reliability are essential. Here are the advantages of using zero-backlash servo couplings:

  • Precise Motion Control: Zero-backlash couplings have no play or clearance between the coupling components. This lack of backlash ensures that motion is accurately transmitted from the servo motor to the driven load without any lost motion. As a result, precision systems can achieve precise positioning and smooth motion profiles.
  • Elimination of Positioning Errors: Backlash in couplings can lead to positioning errors, especially in applications where motion direction changes frequently. Zero-backlash couplings prevent any shift or lag in motion, resulting in accurate and repeatable positioning of the driven load.
  • High Repeatability: With zero-backlash, the coupling maintains consistent positioning during bidirectional movements. This feature enhances repeatability, which is crucial in tasks that require the system to follow the same path repeatedly with minimal deviation.
  • Improved System Stability: Backlash in couplings can cause vibration and instability in precision systems. Zero-backlash couplings dampen vibrations and ensure a more stable motion, which is particularly valuable in high-speed and high-precision applications.
  • Long-Term Reliability: Zero-backlash couplings reduce wear and stress on the servo motor and driven load’s bearings and components. This reduction in wear increases the lifespan of the entire system and reduces the need for frequent maintenance and replacement.
  • Responsive Dynamic Performance: Zero-backlash couplings provide instantaneous response to changes in motion direction and speed. This responsiveness is critical in applications that require rapid acceleration and deceleration, enabling the system to handle dynamic loads with precision and efficiency.
  • Higher Torque Transmission: Zero-backlash couplings can handle higher torque loads compared to some flexible couplings with backlash. This capability allows the system to transmit greater forces without compromising motion accuracy.
  • Enhanced Efficiency: By minimizing lost motion and ensuring precise power transmission, zero-backlash couplings contribute to overall system efficiency. They reduce energy losses and optimize the utilization of the servo motor’s output power.
  • Compatibility with High-Precision Components: In precision systems that incorporate high-precision components like encoders and linear scales, zero-backlash couplings are essential to maintain the accuracy of these components’ measurements and feedback.

In summary, zero-backlash servo couplings play a critical role in precision motion control systems by providing accurate, repeatable, and stable motion. Their ability to eliminate backlash and minimize positioning errors enhances overall system performance, efficiency, and reliability, making them an ideal choice for demanding applications that require the utmost precision.

China best Oldham Couplings Screw/ Clamp Type Flexible for Servo Motor  China best Oldham Couplings Screw/ Clamp Type Flexible for Servo Motor
editor by CX 2024-04-12