Product Description

XL Star Type Rubber Flexible Jaw Coupling Flexible Plum Coupling 

Description:

The Curved Jaw couplings can be used in many applications and serve as an  all-purpose coupling. The basic design of the Curved Jaw allows for a higher torque  capacity in a compact design. The curved tooth has a greater contact area which  gives it the high torque capacity, and reduces edge pressure. It will accommodate  axial, radial and angular shaft misalignment.  The hubs are produced from a variety of materials including: aluminum, gray iron,  Steel and stainless steel. The spider elements are available in various durometer  options in Urethane & Hytrel. The spiders can perform under normal duty cycle conditions to heavy duty cycles which include shock loading and can minimize torsional vibrations in the system.

Product features:
1. Three Piece Design
2. No Lubrication Required
3. Variable Durometer
4. Urethane Elements
5. No Metal to Metal Contact
6. High Torque Capacities
7. Variable Hub Materials

Product parameters:

Application:
Mainly used in the mining, metallurgical, cement, chemicals, construction, building materials, electric power, telecommunications, textiles, and transportation departments.
Such as:
Conveyor: Belt conveyor.AFC conveyor.Chain conveyor.Screw conveyor.
Pump: Water pump, oil pump, slush pump,etc
Fan: Draft fan,Fanner, boiler fan,etc
Excavator: Bucket excavator. Bucket wheel excavators.Bucket wheel stacker reclaimer.
Crane: Tower crane.Gantry crane.Bridge crane.
Others: Various elevators.Coal plough.Ball mill.Crusher.Recreation machine.
Blender equipment.Centrifuger. Washer.Leather-making machine.machine for
recreation park mixer wire drawing machine.Extruder,dregs crusher of boiler.
Plastic feeder.Rubber smelling machine.etc.

Packing & Shipping:

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Contributing to Accuracy and Repeatability in Motion Systems

Servo couplings play a crucial role in improving the accuracy and repeatability of motion systems by addressing several key factors that influence performance:

  • Flexibility and Misalignment Compensation: Servo couplings are designed to be flexible, allowing them to accommodate small misalignments between the motor and the driven load. This flexibility helps prevent mechanical binding and reduces stress on the motor and bearings, ensuring smoother and more accurate motion.
  • Backlash Minimization: Backlash is the play or clearance between the mating teeth or elements of a coupling. It can introduce errors in motion systems, leading to inaccuracies and reduced repeatability. Servo couplings, especially zero-backlash types, are engineered to minimize or eliminate backlash, providing precise and immediate response to changes in direction and velocity.
  • Inertia Reduction: Inertia refers to the resistance of an object to changes in its state of motion. Servo couplings with low mass and compact designs contribute to reducing the overall inertia in the system. Lower inertia allows for faster acceleration and deceleration, improving the system’s responsiveness and accuracy.
  • High Torque Transmission: Servo couplings are capable of transmitting high torque efficiently, ensuring that the motion system can handle the required loads without slippage or power loss. This high torque capacity is vital for maintaining accuracy in high-power applications.
  • Vibration Damping: Vibrations can negatively impact the accuracy and repeatability of motion systems. Servo couplings with damping properties can absorb and dampen vibrations, preventing resonance and oscillations that could affect precision.
  • Consistent Performance: Servo couplings are manufactured to strict tolerances, ensuring uniformity and consistency in their performance. This uniformity contributes to reliable and repeatable motion control, critical in applications requiring precise positioning and motion.

By addressing these factors, servo couplings enable motion systems to achieve higher levels of accuracy and repeatability, making them suitable for applications such as CNC machining, robotics, semiconductor manufacturing, medical devices, and more. The improved precision and reliability provided by servo couplings lead to higher product quality, increased productivity, and reduced downtime in various industrial processes.

clamp coupling

Considerations for Selecting Servo Couplings in High-Speed Applications

High-speed applications present unique challenges that require careful consideration when selecting servo couplings. Here are specific factors to keep in mind:

  • Torsional Stiffness: In high-speed applications, torsional stiffness is crucial to ensure rapid response and accuracy. A coupling with sufficient torsional stiffness reduces torsional deflection and maintains precise motion control even at high speeds.
  • Dynamic Balance: High-speed operation can magnify any imbalances in the servo system. Choosing a servo coupling with dynamic balance helps minimize vibration and prevents excessive wear on the motor and bearings.
  • Material Selection: The material of the servo coupling should be carefully chosen to withstand the high rotational speeds and avoid resonance issues. Consider materials with high strength, low inertia, and excellent fatigue resistance to ensure reliability in high-speed applications.
  • Backlash: High-speed systems require quick changes in motion direction. Selecting a zero-backlash coupling reduces the chances of sudden impacts and vibrations due to backlash, ensuring smooth and accurate motion.
  • Inertia: The inertia of the servo coupling should be minimized to reduce the system’s overall inertia and allow for rapid acceleration and deceleration without sacrificing performance.
  • Temperature Resistance: High-speed operation can generate heat, so the chosen coupling should have good temperature resistance to prevent premature failure or deformation.
  • Bearing Loads: Consider the loads exerted on the motor and driven load bearings at high speeds. The coupling should be capable of handling these loads without causing excessive wear on the bearings.
  • Installation and Alignment: Proper installation and alignment of the servo coupling are critical in high-speed applications. Ensure precise alignment to avoid introducing additional stresses and misalignments that can compromise system performance.
  • Service Life and Maintenance: Evaluate the expected service life of the servo coupling under high-speed conditions and consider the maintenance requirements to ensure long-term reliability.

By considering these specific factors, engineers can select the most suitable servo coupling for high-speed applications, optimizing performance, accuracy, and efficiency while minimizing wear and vibration issues.

clamp coupling

Differences between Rigid, Flexible, and Beam-Type Servo Couplings

Servo couplings come in various designs to suit different motion control applications. Here are the key differences between rigid, flexible, and beam-type servo couplings:

  • Rigid Servo Couplings:
    • Rigid servo couplings do not have any flexibility or movable parts.
    • They provide a solid and direct connection between the servo motor shaft and the driven load.
    • These couplings offer excellent torque transmission with minimal backlash.
    • Rigid couplings are suitable for applications where precise alignment between the motor and load is achievable.
    • They are commonly used in systems that require high torque transmission and minimal motion losses.
    • However, rigid couplings cannot compensate for misalignments, making them sensitive to any shaft misalignment, which may cause premature wear and reduce system lifespan.
  • Flexible Servo Couplings:
    • Flexible servo couplings are designed to accommodate misalignments between the motor and load shafts.
    • They have a certain degree of flexibility, allowing them to bend or deform slightly to compensate for angular, axial, and parallel misalignments.
    • Flexible couplings offer improved misalignment compensation compared to rigid couplings.
    • They help reduce stress on bearings and other sensitive components, increasing the system’s reliability and lifespan.
    • Flexible couplings are suitable for applications with moderate misalignments and where some level of damping or vibration absorption is required.
    • However, flexible couplings may introduce some backlash and have lower torsional rigidity compared to rigid couplings.
  • Beam-Type Servo Couplings:
    • Beam-type servo couplings are a subtype of flexible couplings and are known for their helical beam design.
    • They offer multi-directional flexibility, allowing them to handle angular, axial, and parallel misalignments.
    • Beam couplings provide excellent torsional stiffness, making them ideal for high-speed and high-precision applications.
    • These couplings have low inertia, reducing the impact on the motor’s acceleration and deceleration capabilities.
    • Beam-type couplings are commonly used in applications that require both precise motion control and flexibility for misalignment compensation.
    • However, beam couplings have limited torque capacity compared to some other flexible coupling designs.

Choosing the right servo coupling depends on the specific needs of the motion control system. Rigid couplings are ideal for applications with perfect alignment, while flexible and beam-type couplings are suitable for applications with misalignments and where damping, vibration absorption, and motion control precision are critical.

China factory Star Type Rubber Flexible Shaft Spider Jaw Coupling Plum Coupling Servo Motor  China factory Star Type Rubber Flexible Shaft Spider Jaw Coupling Plum Coupling Servo Motor
editor by CX 2024-03-09