Product Description

Item No. φD L W L1 M Tighten the strength(N.m)
SG7-8-C19- 19.5 20 1.2 9.4 M2.5 1
SG7-8-C26- 26 25.5 2.5 11.5 M3 1.5
SG7-8-C34- 34 32.3 3.3 14.5 M4 1.5
SG7-8-C39- 39 34.1 4.1 15 M4 2.5
SG7-8-C44- 44 34.5 4.5 15 M4 2.5
SG7-8-C50- 50 40.5 4.5 18 M5 7
SG7-8-C56- 56 45 5 20 M5 7
SG7-8-C68- 68 54 6 24 M6 12
SG7-8-C82- 82 68 8 30 M8 16
SG7-8-C94- 94 68 8 30 M8 28
SG7-8-C104- 104 70 10 30 M8 28

Item No. Rated torque Maximum Torque Max Speed Inertia Moment N.m rad RRO Tilting Tolerance End-play Weight:(g)
SG7-8-C19- 1N.m 2N.m 10000prm 0.65×10-6kg.m² 200N.m/rad 0.04mm 1c ±0.2mm 12
SG7-8-C26- 1.4N.m 2.8N.m 10000prm 1.8×10-6kg.m² 690N.m/rad 0.04mm 1c ±0.2mm 31
SG7-8-C34- 2.8N.m 5.6N.m 10000prm 7.2×10-6kg.m² 1650N.m/rad 0.04mm 1c ±0.2mm 64
SG7-8-C39- 5.8N.m 11.6N.m 10000prm 1.8×10-5kg.m² 2500N.m/rad 0.04mm 1c ±0.2mm 97
SG7-8-C44- 8.7N.m 17.4N.m 10000prm 2.5×10-5kg.m² 2900N.m/rad 0.04mm 1c ±0.2mm 113
SG7-8-C50- 15N.m 30N.m 10000prm 8.2×10-5kg.m² 6700N.m/rad 0.04mm 1c ±0.2mm 195
SG7-8-C56- 25N.m 50N.m 10000prm 1×10-4kg.m² 8400N.m/rad 0.04mm 1c ±0.2mm 263
SG7-8-C68- 55N.m 110N.m 10000prm 1.9×10-4kg.m² 11500N.m/rad 0.04mm 1c ±0.2mm 445
SG7-8-C82- 80N.m 160N.m 10000prm 7×10-4kg.m² 14550N.m/rad 0.04mm 1c ±0.2mm 892
SG7-8-C94- 185N.m 370N.m 10000prm 1.23×10-3kg.m² 16900N.m/rad 0.04mm 1c ±0.2mm 950
SG7-8-C104- 255N.m 510N.m 10000prm 1.86×10-3kg.m² 25100N.m/rad 0.04mm 1c ±0.2mm 1190

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Specific Safety Guidelines for Installing and Using Servo Couplings

Servo couplings are crucial components in motion control systems, and their installation and usage require adherence to specific safety guidelines to ensure safe operation and prevent accidents. Here are some essential safety considerations:

  1. Read the Manufacturer’s Instructions:

    Always read and follow the manufacturer’s installation and usage instructions for the specific servo coupling model. Each coupling may have unique requirements and limitations that need to be understood before installation.

  2. Inspect the Coupling:

    Prior to installation, inspect the servo coupling for any signs of damage or defects. Do not use a coupling that appears to be damaged, as it may compromise the overall performance and safety of the system.

  3. Proper Alignment:

    Ensure the correct alignment of the shafts before installing the servo coupling. Misalignment can cause excessive stress on the coupling and lead to premature failure.

  4. Secure Mounting:

    Ensure that the servo coupling is securely mounted to the shafts and other components. Use appropriate fasteners and follow torque specifications provided by the manufacturer.

  5. Use Safety Guards:

    In some applications, moving parts of the servo coupling may pose a risk of entanglement or pinch points. Consider using safety guards or covers to protect personnel from potential hazards.

  6. Stay within Load and Torque Ratings:

    Do not exceed the maximum load and torque ratings specified by the manufacturer. Overloading the servo coupling can lead to catastrophic failure.

  7. Regular Inspection and Maintenance:

    Perform regular inspections of the servo coupling and associated components. Check for wear, misalignment, and any other issues that may affect the coupling’s performance.

  8. Operating Environment:

    Consider the operating environment and choose a servo coupling material that can withstand the conditions, such as temperature, humidity, and exposure to chemicals.

  9. Electric Safety:

    If the servo coupling contains electrical components, follow electrical safety guidelines when installing and connecting these elements.

  10. Training and Awareness:

    Ensure that personnel involved in the installation, operation, and maintenance of the motion control system are adequately trained and aware of the safety guidelines and potential hazards.

Following these safety guidelines will help ensure the safe and efficient operation of the servo coupling and contribute to the overall safety of the motion control system and personnel involved.

clamp coupling

Specialized Servo Couplings for Harsh Environments and Corrosive Conditions

Yes, there are specialized servo couplings specifically designed for use in harsh environments or corrosive conditions. These couplings are engineered with materials and features that provide enhanced durability and resistance to environmental factors. Here are some types of specialized servo couplings for such conditions:

  • Stainless Steel Servo Couplings: Stainless steel couplings are highly corrosion-resistant and suitable for applications where exposure to moisture, chemicals, or corrosive substances is a concern. They offer excellent performance in harsh and corrosive environments.
  • Plastic Servo Couplings: Plastic couplings, made from materials like polyurethane or PEEK, are resistant to corrosion and chemicals. They are ideal for applications that involve exposure to aggressive substances and where metallic couplings may not be suitable.
  • Hermetic Sealing: Some servo couplings come with hermetic sealing, providing an airtight and watertight enclosure. These couplings are used in environments where ingress of dust, moisture, or other contaminants must be prevented.
  • Coated Surfaces: Certain servo couplings feature coatings like zinc, nickel, or chrome to provide an additional layer of protection against corrosion and wear. These coatings can extend the lifespan of the coupling in demanding environments.
  • Non-Metallic Elements: Specialized servo couplings may use non-metallic elements, such as composite materials, to improve corrosion resistance while maintaining flexibility and torque transmission capabilities.

When selecting a servo coupling for harsh environments or corrosive conditions, it’s essential to consider factors like the specific corrosive agents, operating temperature, and the coupling’s compatibility with the application requirements. Using the right specialized servo coupling can ensure reliable and long-lasting performance in challenging industrial settings.

clamp coupling

Advantages of Using Zero-Backlash Servo Couplings in Precision Systems

Zero-backlash servo couplings offer significant benefits in precision motion control systems where accuracy, repeatability, and reliability are essential. Here are the advantages of using zero-backlash servo couplings:

  • Precise Motion Control: Zero-backlash couplings have no play or clearance between the coupling components. This lack of backlash ensures that motion is accurately transmitted from the servo motor to the driven load without any lost motion. As a result, precision systems can achieve precise positioning and smooth motion profiles.
  • Elimination of Positioning Errors: Backlash in couplings can lead to positioning errors, especially in applications where motion direction changes frequently. Zero-backlash couplings prevent any shift or lag in motion, resulting in accurate and repeatable positioning of the driven load.
  • High Repeatability: With zero-backlash, the coupling maintains consistent positioning during bidirectional movements. This feature enhances repeatability, which is crucial in tasks that require the system to follow the same path repeatedly with minimal deviation.
  • Improved System Stability: Backlash in couplings can cause vibration and instability in precision systems. Zero-backlash couplings dampen vibrations and ensure a more stable motion, which is particularly valuable in high-speed and high-precision applications.
  • Long-Term Reliability: Zero-backlash couplings reduce wear and stress on the servo motor and driven load’s bearings and components. This reduction in wear increases the lifespan of the entire system and reduces the need for frequent maintenance and replacement.
  • Responsive Dynamic Performance: Zero-backlash couplings provide instantaneous response to changes in motion direction and speed. This responsiveness is critical in applications that require rapid acceleration and deceleration, enabling the system to handle dynamic loads with precision and efficiency.
  • Higher Torque Transmission: Zero-backlash couplings can handle higher torque loads compared to some flexible couplings with backlash. This capability allows the system to transmit greater forces without compromising motion accuracy.
  • Enhanced Efficiency: By minimizing lost motion and ensuring precise power transmission, zero-backlash couplings contribute to overall system efficiency. They reduce energy losses and optimize the utilization of the servo motor’s output power.
  • Compatibility with High-Precision Components: In precision systems that incorporate high-precision components like encoders and linear scales, zero-backlash couplings are essential to maintain the accuracy of these components’ measurements and feedback.

In summary, zero-backlash servo couplings play a critical role in precision motion control systems by providing accurate, repeatable, and stable motion. Their ability to eliminate backlash and minimize positioning errors enhances overall system performance, efficiency, and reliability, making them an ideal choice for demanding applications that require the utmost precision.

China manufacturer Servo Motor Use High Torque Clamping Type Disk Flexible Couplings  China manufacturer Servo Motor Use High Torque Clamping Type Disk Flexible Couplings
editor by CX 2024-04-03