Product Description

Product Description:
Coupling is used to link the 2 different organizations shaft (driving shaft and driven shaft) to rotate to common transmission torque of mechanical parts.The overloaded power transmission at high speed, some coupling and buffer, vibration and enhance the role of shaft system dynamic performance.Coupling consists of 2 parts, respectively, and the driving shaft and driven shaft connection.

Brand SHAC
Raw material Aluminum
Inner Diameter 4-60MM
Length 25-140MM
Model number JM1,JM2,JDM,JM-T,JH,TM1/TM2/TM3/TM4,JB,JG,JT
Packing Plastic bag+inner box.According to customer’s request
Sample Free sample and catalogue available
Certification ISO 9001 , ISO 14001 , ISO 14000
Application CNC machines, medical and food machinery, fitness machinery, packaging machinery, printing machinery, and other machinery supporting equipment. 

Detailed Photos

 

 

Company Profile

 

Certifications

Our Advantages

 

Service:
1,Our Team:
We have experienced and qualified team of marketing and sales representatives to serve our valued customers with the finest products and unsurpassed service.And have professional engineers team to assessment and development the new precision products,and make the OEM customized more easily,experienced QC team to test the products quaity ensure the goods quality before delivery out.
2,Our products:
Quality is the life .We use only the best quality material to ensure the precision of our
Product.All products we sold out are strictly selected and tested by our QC department.
3,Payment:
We accept payment via TT (Bank transfer), L/C,Western Union.
4,Shipping method:
Including DHL, UPS, TNT, FEDEX,EMS, Airfreight and by Sea,as customer required.

To get sample or price list of linear gudies,ball screw, please contact us.

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Explaining Torque Density in Relation to Servo Couplings

Torque density is a critical concept in servo couplings that relates to the amount of torque a coupling can transmit relative to its size and weight. It is a measure of the coupling’s ability to handle high torque loads efficiently while maintaining a compact and lightweight design. Torque density plays a crucial role in motion control applications where space and weight are significant considerations.

A servo coupling with high torque density can transmit substantial torque without adding excessive bulk or weight to the system. This is especially important in applications where minimizing inertia and maximizing responsiveness are essential for precise motion control. By having a high torque density, the servo coupling can handle high torque requirements while contributing to the overall dynamic performance of the system.

Various factors contribute to the torque density of a servo coupling:

  • Material Selection: The choice of materials impacts the coupling’s strength and stiffness. High-strength materials with low weight, such as high-grade aluminum alloys or lightweight composites, can significantly improve torque density.
  • Design: The design of the coupling, including the shape and thickness of the flexible elements, affects its torque transmission capability. Optimizing the design for torque transmission efficiency can enhance torque density.
  • Flexibility: The coupling’s flexibility allows it to accommodate misalignments and reduce stress concentrations, contributing to its ability to handle high torque loads effectively.
  • Performance Ratings: Manufacturers often provide torque ratings for their servo couplings. These ratings indicate the maximum torque the coupling can transmit, helping users assess the coupling’s torque density in relation to its size and weight.

Choosing a servo coupling with high torque density is advantageous as it allows for compact and lightweight designs, reduces inertia, and improves the overall performance and responsiveness of the motion control system. It also helps prevent over-sizing the coupling, leading to cost savings and space optimization in the application.

clamp coupling

Considerations for Selecting Servo Couplings in High-Speed Applications

High-speed applications present unique challenges that require careful consideration when selecting servo couplings. Here are specific factors to keep in mind:

  • Torsional Stiffness: In high-speed applications, torsional stiffness is crucial to ensure rapid response and accuracy. A coupling with sufficient torsional stiffness reduces torsional deflection and maintains precise motion control even at high speeds.
  • Dynamic Balance: High-speed operation can magnify any imbalances in the servo system. Choosing a servo coupling with dynamic balance helps minimize vibration and prevents excessive wear on the motor and bearings.
  • Material Selection: The material of the servo coupling should be carefully chosen to withstand the high rotational speeds and avoid resonance issues. Consider materials with high strength, low inertia, and excellent fatigue resistance to ensure reliability in high-speed applications.
  • Backlash: High-speed systems require quick changes in motion direction. Selecting a zero-backlash coupling reduces the chances of sudden impacts and vibrations due to backlash, ensuring smooth and accurate motion.
  • Inertia: The inertia of the servo coupling should be minimized to reduce the system’s overall inertia and allow for rapid acceleration and deceleration without sacrificing performance.
  • Temperature Resistance: High-speed operation can generate heat, so the chosen coupling should have good temperature resistance to prevent premature failure or deformation.
  • Bearing Loads: Consider the loads exerted on the motor and driven load bearings at high speeds. The coupling should be capable of handling these loads without causing excessive wear on the bearings.
  • Installation and Alignment: Proper installation and alignment of the servo coupling are critical in high-speed applications. Ensure precise alignment to avoid introducing additional stresses and misalignments that can compromise system performance.
  • Service Life and Maintenance: Evaluate the expected service life of the servo coupling under high-speed conditions and consider the maintenance requirements to ensure long-term reliability.

By considering these specific factors, engineers can select the most suitable servo coupling for high-speed applications, optimizing performance, accuracy, and efficiency while minimizing wear and vibration issues.

clamp coupling

What is a Servo Coupling, and Its Role in Servo Motor Systems

A servo coupling is a specialized type of coupling used in servo motor systems to connect the servo motor shaft to the driven load. Servo motor systems are widely used in various industries for precise motion control applications, where accuracy, speed, and torque control are crucial. The servo coupling plays a vital role in ensuring the efficient transfer of motion and torque from the servo motor to the driven load while compensating for misalignments between the motor and load shafts.

The main functions and role of a servo coupling in a servo motor system are as follows:

  • Motion Transmission: The primary function of a servo coupling is to transmit motion from the shaft of the servo motor to the load. It connects the motor shaft to the driven load, such as a ball screw, gearbox, or another mechanical component, enabling the motor to drive and control the motion of the load precisely.
  • Torque Transmission: In addition to motion, the servo coupling also transfers torque from the motor to the load. As the servo motor generates rotational force (torque), the coupling efficiently transmits this torque to the driven load, allowing it to perform its intended motion with the required force.
  • Misalignment Compensation: Perfect alignment between the servo motor shaft and the load shaft is challenging to achieve in real-world applications. Any misalignment can cause detrimental effects, including increased wear, reduced performance, and premature failure. The servo coupling acts as a flexible element that can compensate for various types of misalignments, such as angular, parallel, and axial misalignments. This flexibility helps to maintain smooth and efficient power transmission even when the motor and load are not perfectly aligned.
  • Damping of Vibrations: Servo motor systems often operate at high speeds and with rapid changes in direction. These dynamic movements can generate vibrations that may adversely affect the performance and lifespan of the system. A well-designed servo coupling can dampen these vibrations, providing a more stable and controlled motion to the load, reducing the risk of damage or inaccuracies.
  • Backlash Minimization: Backlash refers to the play or gap between the teeth or components of the coupling when the direction of motion is reversed. Excessive backlash can result in lost motion and reduced precision. High-quality servo couplings are engineered to minimize backlash, ensuring accurate bidirectional motion control in the servo motor system.

Overall, a properly selected and installed servo coupling enhances the performance, efficiency, and reliability of servo motor systems. It protects sensitive components, such as bearings and motors, from excessive loads and vibrations, leading to extended equipment life and improved motion control capabilities.

China Hot selling Bellow Servo Motor Shaft Coupling Metel Bellow Spring Clamp Coupling  China Hot selling Bellow Servo Motor Shaft Coupling Metel Bellow Spring Clamp Coupling
editor by CX 2024-04-13